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Abstract We consider the linear regression model with stochastic regressors
and stochastic errors both in regressors and the dependent variable (“struc-
tural EIV model”), where the regressors and errors are assumed to satisfy some
interesting and general conditions, different from traditional assumptions on
EIV models (such as Deming regression). The most interesting fact is that
we need neither independence of errors, nor identical distributions, nor zero
means. The first main result is that the TLS estimator, where the traditional
Frobenius norm is replaced by the Chebyshev norm, yields a consistent estima-
tor of regression parameters under the assumptions summarized below. The
second main result is that we design an algorithm for computation of the es-
timator, reducing the computation to a family of generalized linear-fractional
programming problems (which are easily computable by interior point meth-
ods). The conditions under which our estimator works are (said rougly): it is
known which regressors are affected by random errors and which are observed
exactly; that the regressors satisfy a certain asymptotic regularity condition;
all error distributions, both in regressors and in the endogenous variable, are
bounded in absolute value by a common bound (but the bound is unknown
and is estimated); there is a high probability that we observe a family of data
points where the errors are close to the bound. We also generalize the method
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to the case that the bounds of errors in the dependent variable and regressors
are not the same, but their ratios are known or estimable. The assumptions,
under which our estimator works, cover many settings where the traditional
TLS is inconsistent.

Keywords Errors-In-Variables · Measurement error models · Total Least
Squares · Chebyshev matrix norm · Bounded error distributions · Generalized
Linear-Fractional Programming
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1 Introduction

It is generally known that if a linear regression model suffers from the errors-
in-variables (EIV) problem (that is, if we can observe only a contaminated
form of regressors), then ordinary least squares (OLS) is inconsistent. Vari-
ous methods for EIV estimation have been studied in econometric literature,
including the instrumental variables (IV) method [8,9,27], or the generalized
method of moments [3,7,9,10,12]. We also refer to the recent review article [5]
and references therein, including many applications of EIV models in finance,
with the prominent example of the capital asset pricing model. See also [1,2,
19,23,28] for further applications and special problems such as EIV in dynamic
or panel models. Recall also that further important problems are related to
EIV regression models, such as identifiability issues or, more generally, the ne-
cessity of additional information for estimation procedures (such as parameter
restrictions, moment restrictions or additional data as instruments). For ex-
ample, see [36,37] for the linear case where identifiability is assured via prior
restrictions on parameters, and see also a remarkable result [22] on logistic
regression. Our setup is essentially different from the linear models studied in
[36,37] (details of our model are given is Section 3). But still, identifiability
issues arise in our case as well, as discussed in Section 8 of this article.

The motivation for the construction of our estimator can be also illustrated
by a quote from the introduction of [12] summarizing the ‘standard’ treatment
of the EIV problem in econometrics:

“The most common remedy is to use economic theory or intuition to find additional
observable variables that can serve as instruments, but in many situations no such
variables are available. Consistent estimators based on the original, unaugmented
set of observable variables are therefore potentially quite valuable.”

Our estimator fits in this context: it needs only the unaugmented set of ob-
servable variables.

In the terminology of [5], this paper is a contribution to the theory of
“classical estimators”. More precisely, this is a contribution to the area of
minimum-norm estimators. From now on, we will restrict our attention only
to this class of estimators. The introduction will be devoted to a discussion
on the usage of various norms, showing how this area is complemented by our
approach.
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Remark. Now it is possible to skip the rest of the introduction and continue in Section 3,
where model assumptions are stated formally. In Section 3, only equations (1) – (3) are
needed.

Notation. We consider the linear regression model

yi = x′
iβ + εi, i = 1, . . . , n, (1)

where β ∈ Rp is an unknown vector of parameters, xi =
(
xi1, . . . , xip

)′ are
unobservable stochastic regressors, and εi, i = 1, . . . , n, are additive random
errors (in observations of the dependent variable). We assume the following
form of the EIV model: observable data are

(
yi, zij

)
, where

zij = xij + νij , i = 1, . . . , n, j = 1, . . . p, (2)

and νij are random errors (in observations of the regressors). Section 3 will
be devoted to a detailed formulation of assumptions on the distribution of
(xij , νij , εi).

We denote below

Zn =
(
zij

)j=1,...p

i=1,...,n
and yn = (y1, . . . , yn)

′. (3)

An overview: EIV regression models and minimum-norm esti-
mators. The EIV models, also called measurement error models, have a very
long history, with Addock (1877, 1878) usually being regarded as the first
person to specifically consider them. The concepts have been independently
developed for solving different problems arising especially in statistics and
numerical mathematics. Corresponding methods, especially the so-called to-
tal least squares approach and its modifications, became quite popular in the
1980s after the influential paper published by [17]. Interest was especially high
due to the fact that computationally stable and efficient methods based on
SVD decomposition had been developed. In the 1990s a number of extensions
were suggested, especially by the groups around Cheng and Van Huffel.

Total Least Squares (TLS). Recall that the total least squares (TLS)
problem can be algebraically formulated as follows. Given A ∈ Rn×p and
w ∈ Rn, find ∆A ∈ Rn×p and ∆w ∈ Rn such that:

– the linear system (A+∆A)ξ = (w +∆w) is solvable;
– ∥(∆A,∆w)∥F is minimal, where ∥ · ∥F denotes the Frobenius norm.

It is worth noting that the literature about EIV, TLS and their general-
izations focuses mostly on estimation and numerical algorithms, and less on
statistical properties such as consistency, asymptotic distribution, testing, de-
veloping confidence intervals, etc. Most of the results, some of which can now
be considered classical, can be found in [4,6,39], among others.

Assume the EIV model in which rows (εi, νi1, . . . , νip) of the matrix of
errors are independent, while not necessarily homoscedastic, and the TLS ap-
proach based on the Frobenius norm leading to the estimate β̂ of β. Then
existence of β̂ with the probability tending to one as n → ∞ was proved by
[16,31].
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Asymptotic properties of β̂ have been studied by many authors. The maxi-
mum likelihood approach under normality assumption on errors was developed
by Healy [20]. However, it appears that the first really deep study of consis-
tency and asymptotic distribution can be credited to Gleser [16]. He has shown
that when var(ε) = σ2I, a wide class of approaches based on least squares in
model (1) for estimation of the vector of parameters lead to identical esti-
mates and that they coincide with the maximum likelihood one under the
assumption of normality of errors. Moreover, he has established (not assum-

ing normality of errors) quite general conditions under which β̂ in the EIV
model with or without intercept are strongly consistent and asymptotically
normal. Recall that, in his approach, one of the key conditions is that the
matrix Ξ = limn→∞ n−1Zn′Zn exists and is positive definitive.

It appears that the conditions under which β̂ is strongly consistent are too
restrictive. Thus, Gallo [15] has derived weaker conditions under which β̂ is
weakly consistent. More precisely, he has proven that, provided rows of the ma-
trix of errors [ εi, νi1, . . . , νip ] are independent (row by row), their distribution
has finite fourth moments and

1√
n
λmin (Z

n′Zn) → ∞ &
λ2
min (Z

n′Zn)

λmax (Zn′Zn)
→ ∞ as n → ∞,

where λmin(A)
(
λmax(A)

)
is the smallest (largest) eigenvalue of matrix A,

then β̂ is weakly consistent, i.e., β̂
P−→ β as n → ∞. He has also observed

that OLS in the EIV model is inconsistent and a TLS estimate should be used
instead.

The results for weak and strong consistency were later strengthened by
Kukush [24]. Their conditions are on the one hand weaker, yet on the other
hand not so easily verifiable.

As mentioned above, the first asymptotic results for the TLS estimates
were obtained under quite strict and restrictive conditions, one of them being
that the errors are independent and identically distributed. Therefore, gen-
eralized TLS (GTLS) have been suggested, and their properties studied, in
which this assumption is relaxed and replaced by the condition that the er-
rors are row-wise independent but correlated within the rows with identical
covariance matrix V . It has been shown that this situation can be reduced to
the TLS problem by multiplying the data matrix by V −1/2. However, even
the conditions of GTLS method are too restrictive for some applications, es-
pecially due to the assumption of the equal covariance of all rows in the error
matrix. Therefore, further generalizations have been suggested in the litera-
ture. Among them we would like to emphasize a proposal termed EW-TLS,
by Kukush and Van Huffel [25], who assumed that the errors are row-wise
correlated with known correlation matrices. Evidently, any generalization of
this type has to be paid for by much more complicated numerical calculations,
because for the EW-TLS no closed-form solution exists, and one has to apply
non-convex optimization methods when calculating its approximation. Later



EIV regression with bounded errors in data 5

on Markowski et al. [29] went even further, allowing that correlations among
the errors within each row exist with possibly singular covariance matrices. Re-
cently, Pešta [33] has established conditions under which the TLS estimate is
strongly consistent under the assumption that the errors are weakly dependent
and form a so-called α- or φ-mixing sequence.

Reformulation of TLS with other matrix norms. The TLS estimates
are usually based on the Frobenius norm. However, other matrix norms can
be used as well. Among them, an important role is played by the class of
orthogonally invariant (unitarily invariant) norms1. Recall that these norms
were already completely characterized by von Neumann [40]. We also refer to
the recent article [34] on unitarily invariant norms in EIV estimation.

Let A ∈ Rn×p be any matrix with singular values σ1 ≥ . . . ≥ σmin{n,p} ≥ 0.
Among the most popular representatives of the orthogonally invariant norms
belong q-Ky Fan k-norms, defined as

∥A∥(k)q =
(∑k

i=1
σq
i

)1/q

, q ≥ 1, 1 ≤ k ≤ min{n, p}

with the most important representative being the spectral matrix norm (k = 1
and q = 1), Frobenius norm (k = min{n, p} and q = 2) or nuclear matrix norm
(k = min{n, p} and q = 1). It is evident that popular q-Schatten norms can
also be considered a special case of q-Ky Fan k-norms for k = min{n, p}. For
details see e.g. [35].

It follows from the results of [16,31] that when the distribution of the
errors is absolutely continuous with respect to the Lebesque measure and any
unitarily invariant norm is used instead of the Frobenius norm in the EIV
model, β̂ exists with probability equal to one as n → ∞ and coincides with the
classical TLS estimate. Moreover, asymptotic properties of the classical EIV
models hold, or rather, can be straightforwardly generalized to this situation
as well.

2 Our contribution and organization of the paper

The central role of this paper will be played by the Chebyshev matrix norm
∥A∥max = maxi,j |Aij |. This paper complements the above mentioned theory,
since the Chebyshev norm does not fit in the previous context and similar
theory is not currently available for this norm (as far as we are aware). We
will show that the Chebyshev norm can be used for consistent estimation of
the regression parameters of the EIV models under conditions very different
from those discussed above. The conditions will be summarized in Section 3.
We can motivate them by the following easy example.

An example: a setup where our estimator is consistent while OLS
is not. Consider the simple model

yi = β + εi, i = 1, . . . , n.

1 A matrix norm ∥ · ∥ is orthogonally invariant, if ∥UAV ∥ = ∥A∥ for all A ∈ Rn×p and
all unitary matrices U ∈ Rn×n and V ∈ Rp×p.
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Assume that εi are independent, identically and continuously distributed with
support (−γ, γ), where γ is an unknown constant. Assume further that Eεi ̸=
0. In this setup, we have no errors in regressors, and thus TLS reduces to
OLS. And OLS is obviously inconsistent. But our method yields a consistent
estimator of β and γ.

Outline of the paper. This paper is organized as follows. First, in Sec-
tion 3 conditions on the design matrix and errors are formulated. In Section 4
the original TLS problem is reformulated with the Chebyshev norm used in-
stead of the Frobenius one. The main results are stated in Section 5. First, we
show that if we can solve the Chebyshev Norm Problem modification (CNP),
then we get consistent estimators of the regression coefficients. Second, we
show how to compute the desired estimates. Section 6 is devoted to a dis-
cussion about computational complexity of the proposed algorithm. Proofs of
theorems can be found in Section 7. General discussion and conclusions follow.

3 Model assumptions

Now we formulate two assumptions on the distribution of (xij , νij , εi), under
which we will derive a consistent estimator for β based on total least squares,
where the usual Frobenius norm is replaced by the Chebyshev norm. Then we
propose an algorithm for its computation.

Assumption 1. There exists an unknown constant γ > 0, called radius,
such that

(i) |εi| ≤ γ a.s., i = 1, . . . , n;

and there is a known index set Γ ⊆ {1, . . . , p} such that for all j = 1, . . . , p:

(ii) if j ̸∈ Γ , then νij = 0 a.s. for all i = 1, . . . , n;
(iii) if j ∈ Γ , then |νij | ≤ γ a.s. for all i = 1, . . . , n.

Comment. The set Γ formalizes the assumption that we know in advance
which regressors are measured exactly and which are not.

EIV models in which some explanatory variables are subject to errors and
some are measured exactly appear quite often and naturally in practice. They
bring about not at all trivial problems for the theory when Γ is assumed to
be known. (Conversely, if we have only partial information about Γ , or it is
completely unknown, the situation would be much more complicated and this
case would deserve further research.)

The simplest situation when some regressors are known to be exact arises
when we include a non-random (fixed) intercept into the model. In the liter-
ature, these models are sometimes termed PEIV (partial errors-in-variables)
models and have been studied by several authors. From the numerical and
algorithmic points of view the PEIV model was considered e.g., by [18], who
obtained a so-called LS-TLS estimate. The basic idea of their approach was
to separate exact and approximate observations from each other, and to solve
the resulting rank-deficient optimization problem. A similar situation was re-
garded from the statistical point of view already by [16], who studied the EIV
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model both with and without the intercept. It is important to point out that
properties of the classical EIV models can be straightforwardly generalized to
the PEIV models as well.

Assumption 2 (asymptotic properties of regressors and errors).
Let ∥ · ∥ be any vector norm. We assume that

(∀α > 0) (∃c > 0) (∀u ∈ Rp s.t. ∥u∥ = 1) Pr[An(α, c, u)]
n→∞−→ 1,

where An(α, c, u) is the following event: there exists i0 ∈ {1, . . . , n} such that

(i) |x′
i0
u| ≥ c; and

(ii) −sgn(x′
i0
u) · εi0 ≥ γ − α; and

(iii) (∀j ∈ Γ ) sgn(x′
i0
u) · sgn(βj + uj) · νi0j ≥ γ − α,

where sgn(ξ) = 1 if ξ ≥ 0 and sgn(ξ) = −1 if ξ < 0.
Remark. A generalization of Assumptions 1 and 2 for the case of non-

identical error radii will be considered in Section 8.
Informal discussion on Assumption 2. Item 2(i) postulates a kind of asymp-

totic regularity conditions for regressors. Items 2(ii-iii) are the crucial ones. We
have stated them in the weakest possible form necessary for the forthcoming
proofs. However, roughly stated, (ii-iii) require that if n is sufficiently large,
then we have a high probability that there appears an observation i0 where
the errors approach the limits ±γ arbitrarily close. Or, said in another way,
whichever signs ±1 of errors we prescribe, we have a high probability that we
will meet an observation i0 where the errors are arbitrarily close to the limits
±γ in the prescribed directions.

Observe that we need neither independence, nor zero means, nor identical
distributions.

Example 1. When all error terms εi and νij with j ∈ Γ have continuous dis-
tributions with support (−γ, γ) (but they need not be identically distributed)
and are independent, then Assumptions 2(ii-iii) are satisfied.

Example 2. The distributions of εi, νij with j ∈ Γ can also be discrete or
mixed; for example, if the values ±γ are attained with probability tending to
one as n → ∞, then Assumptions 2(ii-iii) are satisfied.

Example 3. We show a “pathological” example when Assumption 2 is not
satisfied. Consider the case p = 1, Γ = {1}, β1 > 0. Then only two choices
are possible: u = 1 and u = −1. If the errors νi1 and the regressors xi are
dependent, almost surely satisfying (νi1 ≥ 0 iff xi < 0) and (νi1 < 0 iff
xi ≥ 0), then Assumption 2 is violated.

Example 3 shows that rather strong and unnatural dependence structures
between the regressors and the error terms result in a violation of the assump-
tion.

4 The Chebyshev Norm Problem: Formulation

As already outlined, we will need a reformulation of the original TLS problem
when the Frobenius norm is replaced by the Chebyshev norm. We will take
the advantage of the following algebraic formulation:
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Chebyshev Norm Problem (CNP). Given A ∈ Rn×p, w ∈ Rn, and
Γ ⊆ {1, . . . , p}, find ∆A ∈ Rn×p and ∆w ∈ Rn such that:

– the linear system (A+∆A)ξ = (w +∆w) is solvable;
– if j ̸∈ Γ , then the j-th column of ∆A is zero; and
– ∥(∆A,∆w)∥max is minimal.

Notation: definition of ξ∗(A,w, Γ ), δ∗(A,w, Γ ). When (∆A,∆w) is
(any) solution to CNP with data (A,w, Γ ), then

– ξ∗(A,w, Γ ) denotes (any) solution ξ of the system (A+∆A)ξ = (w+∆w),
– δ∗(A,w, Γ ) = ∥(∆A,∆w)∥max.

5 Main results

The first main result of this paper shows that if we can solve CNP, then we
get consistent estimators of β and γ (recall that γ is the radius of the error
distribution defined in Assumption 1). The second main result is algorithmic:
it will show how to compute the estimators. We continue with the notation
of Sections 3 and 4; recalling (3), Zn = (zij) are the observable values of
regressors, which are “contaminated” by errors if j ∈ Γ , and are observed
precisely if j ̸∈ Γ .

Theorem 1 Let

β̂n = ξ∗(Zn, yn, Γ ) and γ̂n = δ∗(Zn, yn, Γ ). (4)

Under Assumptions 1 and 2,

β̂n P−→ β and γ̂n P−→ γ as n → ∞.

The algorithm for computation of β̂n and γ̂n is given by the following
result.2

Theorem 2 Let z′1, . . . , z
′
n be the rows of Zn. For a sign vector s ∈ {±1}p,

consider the optimization problem

cns = min
b∈Rp

 max
i∈{1,...,n}
k∈{0,1}

(−1)1−kz′ib+ (−1)kyi
η′Dsb+ 1

∣∣∣∣∣ Dsb ≥ 0

 , (5)

2 A preliminary version of the algorithm for CNP, presented in Theorem 2, was reported
at the ICCS’15 conference and is reported in the proceedings [21]. It was studied there from
the complexity-theoretic perspective. Here we present it with a proof for the simple reason
that the geometry on which the algorithm is based will also be necessary for the proof of
Theorem 1 and cannot be avoided. This paper is a follow-up of the mentioned conference
contribution.
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where Ds = diag(s) and η = (η1, . . . , ηp)
′ with

ηi =

{
1 if i ∈ Γ ,
0 if i ̸∈ Γ .

(6)

Let bns denote the corresponding argmin (i.e., any b satisfying Dsb ≥ 0 for
which the minimum value cns is attained). Then

γ̂n = min
s∈{±1}p

cns , (7)

and if s∗ is the argmin of (7), then β̂n = bns∗ .

6 Discussion about computational complexity

Observe that the optimization problem (5) is a generalized linear-fractional
programming (GLFP) problem, which can be solved efficiently (in polynomial
time) by interior point methods [13,30]. Thus the computation is reduced to
solving 2p GLFPs.

The main question is whether the resulting computation time

2p × (polynomial computation time for GLFP)

is “good news” or “bad news”. Although it is an exponential-time algorithm,
we give a complexity-theoretic argument that this is the best that can be
achieved. In [21] we proved that solving CNP is an NP-hard problem, and
thus not only the algorithm of Theorem 2, but any algorithm for CNP must
be somehow exponential (unless P = NP). In principle, it can be exponential
either in n, the number of observations, or in p, the number of parameters.
Since usually p ≪ n in practice, the fact that the time is exponential in p and
not in n should be understood as good news. In practice we usually encounter
regression models with a bounded number of regressors (say, at most 20);
hence we are to solve at most 220 GLFPs. And 220 is large, but still tractable
with the aid of contemporary hardware.

Moreover, observe that the method is easy-to-parallelize, which makes the
method suitable for distributed architectures, which are developing very fast
nowadays. Indeed, if we can use 2p parallel processors, each of them is assigned
an s ∈ {±1}p, and the processors can solve the 2p GLFPs (5) independently.

In theory, when n → ∞, the complexity depends on the relationship be-
tween n and p. In Section 3 we declared p as a fixed constant; then 2p is also a
fixed constant and the algorithm is polynomial. If we admit that p is a function
of n, then it remains polynomial as long as p = O(logn).
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6.1 An important special case: the signs of β are known a priori

There is a special case when the algorithm is even more efficient: it is the case
when we know a priori the signs of the regression coefficients. If, for example,
we know a priori that β ≥ 0, then it suffices to use Theorem 2 with a single
choice s = (1, . . . , 1) instead of all choices s ∈ {±1}p. Then the problem is
reduced to a single GLFP. Thus:

Corollary 1 If the signs of regression parameters β are known, then the es-
timators β̂n and γ̂n are computable in polynomial time.

7 Proofs of Theorems 1 and 2

7.1 Conventions and notation

Let e denote the all-one vector. For a matrix A, its (i, j)-th element is denoted
Aij . An inequality A ≤ B between matrices is understood entrywise (i.e.,
Aij ≤ Bij for all i, j). The absolute value |x| of a vector x is also understood
entrywise. Observe that for every vector x ∈ Rm there is a sign vector s ∈
{±1}m such that |x| = Dsx, where Ds = diag(s).

7.2 A reformulation of CNP and proof of Theorem 2

Lemma 1 ([32]) Let AC ∈ Rn×p, 0 ≤ A∆ ∈ Rn×p, wC ∈ Rn, 0 ≤ w∆ ∈ Rn.
A vector ξ ∈ Rp is a solution of a system Aξ = w with some A and w satisfying
AC − A∆ ≤ A ≤ AC + A∆ and wC − w∆ ≤ w ≤ wC + w∆, if and only if it
satisfies |ACξ − wC | ≤ A∆|ξ|+ w∆.

Remark. To avoid misunderstanding, we can state the lemma also in the
following form: given AC , A∆, wC , w∆ as above, it holds

{ξ ∈ Rp : |ACξ − wC | ≤ A∆|ξ|+ w∆}

=
∪

A: AC−A∆≤A≤AC+A∆

w: wC−w∆≤w≤wC+w∆

{ξ ∈ Rp : Aξ = w}.

In CNP, we are given (A,w, Γ ) and we are to find the minimum number
δ = ∥(∆A,∆w)∥max such that the linear system (A+∆A)ξ = w +∆w has a
solution ξ and the j-th column of Γ is zero when j ̸∈ Γ . Let E be a matrix
with rows η′, . . . , η′, where η is given by (6) (that is: the j-th column of E is
zero when j ̸∈ Γ , and it is the all-one vector when j ∈ Γ ). Now CNP can be
reformulated as the task to find the minimum δ such that, for a certain A0

satisfying A− δE ≤ A0 ≤ A+ δE and a certain w0 satisfying w − δe ≤ w0 ≤
w + δe, the system A0ξ = w0 is solvable. By Lemma 1, this is equivalent to
finding the minimum δ such that

Bδ := {ξ : |Aξ − w| ≤ δE|ξ|+ δe} ̸= ∅. (8)
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Now we recall (4): γ̂n and β̂n are defined as solutions to CNP with data
(Zn, yn, Γ ). We substitute A := Zn with rows z′1, . . . , z

′
n and w := yn. We will

also write δn to emphasize that δ depends on n. We get

Bδn = {ξ : |Znξ − yn| ≤ δnE|ξ|+ δne}

=
∪

s∈{±1}p

ξ :
Znξ − yn ≤ δnEDsξ + δne,
Znξ − yn ≥ −δnEDsξ − δne,

Dsξ ≥ 0

 (9)

=
∪

s∈{±1}p

ξ :

z′
iξ−yi

η′Dsξ+1 ≤ δn, i = 1, . . . , n,
−z′

iξ+yi

η′Dsξ+1 ≤ δn, i = 1, . . . , n,

Dsξ ≥ 0

 , (10)

where we have used the fact that we can write |ξ| = Dsξ in every orthant
s ∈ {±1}p of Rp. Expression (10) shows that finding the minimum δn ≡ γ̂n

such that Bδn ̸= ∅ is indeed equivalent to (5) and (7). The proof of Theorem 2
is thus complete.

7.3 Geometry

Example 1. In Figure 1 we consider an example motivated by [21] with n = 3
and

Zn =

 3 −0.5
0.5 3
0.6 3

 , yn =

0
0
0

 .

The Figure depicts (9) where δn ∈ {0.1, 0.2, . . . , 0.8}. It is apparent that Bδ

is a union of polyhedra, which are orthant-by-orthant convex. In this example
we obviously get (δn)∗ := min{δn : Bδn ̸= ∅} = 0, and the corresponding

estimate is β̂n = 0.
Example 2. In Figure 2 we consider the example

Zn =

 3 −0.5
0.5 3
0.6 3

 , yn =

 0.2
0.7
−0.1

 .

Here, (δn)∗ = 0.323 and β̂n = (0.22, 0.08)′. The minimum δn is attained in
the orthant s = (1, 1).

Example 3. Figure 3 depicts what happens with the set Bδ when we add
a new observation (zn+1, yn+1). In Figure 3 we can see the set Bδ=0.5 copied
from Figure 1, plus the polyhedron depicting the newly added inequalities
in (9): ∪

s∈{±1}2

ξ :
z′n+1ξ − yn+1 ≤ δη′Dsξ + δ,
z′n+1ξ − yn+1 ≥ −δη′Dsξ − δ,

Dsξ ≥ 0

 ,
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−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

δ = 0.5

δ = 0.8

δ = 0.7

δ = 0.1

Fig. 1 Example 1 — Sets Bδn for δn ∈ {0.1, 0.2, . . . , 0.8}.

−0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

β̂n, (δn)∗ = 0.323

0.7

0.6

0.5
0.4

0.34

0.8

Fig. 2 Example 2 — Sets Bδn for δn ∈ {0.323, 0.34, 0.4, 0.5, 0.6, 0.7, 0.8}.
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−0.2 −0.1 0 0.1 0.2 0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Fig. 3 Example 3 — An additional observation can be understood as a cut of the set Bδ .

where δ = 0.5 is fixed, z′n+1 = (0.6, 2.9) and yn+1 = 0.05. Addition of a new
observation can thus be understood as a “cut” of Bδ.

Adding inequalities may result in infeasibility when δ is kept fixed. If this
is the case, it is necessary to increase δ. This is a useful observation which
shows:

Lemma 2 For every n, γ̂n+1 ≥ γ̂n a.s.

Since we have
γ̂n ≤ γ a.s. (11)

(obvious), we conclude that the sequence γ̂n converges a.s. to a limit γ∗. It
remains to show that the undesirable case γ∗ < γ cannot occur. This will
be done in the next section. The idea of the proof is based on the fact that
Assumption 2 implies that a suitable sequence of cuts exists with a high prob-
ability.

7.4 Proof of Theorem 1

We continue with the notation of the previous sections. In particular, from (4)

we know that β̂n ∈ B(δn)∗ , where (δn)∗ is the minimum δn such that (8) is
nonempty. Now we will study the behavior of B(δn)∗ when n → ∞. We will
show that the probability that the set B(δn)∗ degenerates to a single point {β}
tends towards 1.



14 Milan Hlad́ık et al.

Recall that in Assumption 2 we defined the crucial event An(α, c, u), which
was assumed to occur with a high probability when n is large. We will prove
that if An holds true, then every point β̃ ̸= β will be cut off from B(δn)∗ by
a suitable cut, provided that α is sufficiently small. Moreover, convergence of
β̂n to β implies convergence of γ̂n to γ. The estimators β̂n and γ̂n are thus
(weakly) consistent.

So, fix an arbitrary β̃ ̸= β and set

u = β̃ − β.

Choose an α such that

0 < α <
c∥u∥

1 + η′|β̃|
(12)

(recall that |β̃| is the component-wise absolute value of β̃), where c > 0 is the
number from Assumption 2(i). Also recall also that η was defined in (6). Now

assume that An holds true and that β̃ ∈ B(δn)∗ . Thus β̃ fulfills the system
(9). In particular, it fulfills

z′i0 β̃ − yi0 ≤ (δn)∗η′Dsβ̃ + (δn)∗, (13)

z′i0 β̃ − yi0 ≥ −(δn)∗η′Dsβ̃ − (δn)∗, (14)

Dsβ̃ ≥ 0

for some s ∈ {±1}p and i0 ∈ {1, . . . , n} such that, using Assumption 2,

(i) if x′
i0
u ≥ 0, then:

(a) −εi0 ≥ γ − α,

(b) sgn(β̃j)νi0j ≥ γ − α if j ∈ Γ ;
(ii) if x′

i0
u < 0, then:

(a) εi0 ≥ γ − α,

(b) −sgn(β̃j)νi0j ≥ γ − α if j ∈ Γ .

We will distinguish between two cases according to the sign of x′
i0
u. Let

νi0 = (νi01, . . . , νi0p)
′.

CASE 1: x′
i0
u ≥ c∥u∥. Using zi0 = xi0 +νi0 and yi0 = x′

i0
β+εi0 , from (13)

we derive

(xi0 + νi0)
′(β + u)− (xi0

′β + εi0) ≤ (δn)∗η′(β + u) + (δn)∗.

By rearrangement we get

x′
i0u+ (ν′i0 − (δn)∗η′Ds)β̃ ≤ (δn)∗ + εi0 . (15)



EIV regression with bounded errors in data 15

Now

α ≥ (δn)∗ + εi0 [using (i)(a) and (11)]

≥ x′
i0u+ (ν′i0 − (δn)∗η′Ds)β̃ [using (15)]

≥ c∥u∥+ (ν′i0 − (δn)∗η′Ds)β̃ [CASE 1 assumption]

≥ c∥u∥+ ((γ − α)η′ − (δn)∗η′)|β̃| [using (i)(b)]

≥ c∥u∥ − αη′|β̃|

≥ c∥u∥ − η′|β̃| c∥u∥
1 + η′|β̃|

[using (12)]

> α.

CASE 2: x′
i0
u ≤ −c∥u∥. From (14) we derive

−(xi0 + νi0)
′(β + u) + (x′

i0β + εi0) ≤ (δn)∗η′Dsβ̃ + (δn)∗,

and, after a rearrangement,

−x′
i0u− (νi0

′ + (δn)∗η′Ds)β̃ ≤ (δn)∗ − εi0 . (16)

Now, using (ii)(a, b), (11), (12) and (16),

α ≥ (δn)∗ − εi0

≥ −x′
i0u− (ν′i0 + (δn)∗η′Ds)β̃

≥ c∥u∥ − (ν′i0 + (δn)∗η′Ds)β̃

≥ c∥u∥+ ((γ − α)η′ − (δn)∗η′)|β̃|

≥ c∥u∥ − αη′|β̃|

≥ c∥u∥ − η′|β̃| c∥u∥
1 + η′|β|

> α.

Both CASE 1 and CASE 2 lead to a contradiction. The proof of consistency
of β̂n is now complete. To show that γ̂n is consistent, assume that (δn)∗ →
γ∗ < γ. Then, at least one of the inequalities (15) and (16) is violated when
α > 0 is sufficiently small and n large. This completes the proof of Theorem 1.

8 A generalization: the radii of error distributions need not be the
same

So far we have assumed that all error distributions have the same radius γ.
It is easy to generalize the theory to the following setup. Let γ0 > 0 be an
(unknown) radius of the distribution of εi and let γj ≥ 0 (j = 1, . . . , p) be
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an (unknown) radius of the error distribution of νij . Assume that the ratios
γj/γ0 are known. Then it suffices to replace the 0-1 vector η defined in (6) by

η′ =

(
γ1
γ0

, . . . ,
γp
γ0

)
and the consistency of β̂n and γ̂n ≡ γ̂n

0 remains preserved. Thus we also have
consistent estimators of γj , j = 1, . . . , n. The computational properties are
preserved, too.

Remark. This is, in a sense, similar to the classical TLS theory: the knowl-

edge of ratios
var(νij)
var(εi)

with j = 1, . . . , p is known to be, under certain as-

sumptions, a sufficient condition for identification. (Details on identification
conditions for EIV models can be found in [6].)

Open problem. The idea of this section leads us to the following inter-
esting question: is it possible to design a consistent estimator of the radii
γ1/γ0, . . . , γp/γ0?

9 Discussion on uniqueness of β̂n

Recall that β̂n is defined as any solution to CNP. Although it is unique in the
limit n → ∞ in the sense of Theorem 1, for a fixed n it generally need not
be unique. Here we exploit the geometry of the problem, showing when it is
unique and when it is not. In this section we treat n as a fixed constant.

Recall that β̂n is defined as any point in the polyhedron

Ps = {ξ : Asξ ≤ cs} ,

where s ∈ {±1}p is a suitable sign vector and

As =

 Zn − (δn)∗EDs

−Zn − (δn)∗EDs

−Ds

 , cs =

 yn + (δn)∗e
−yn + (δn)∗e

0

 .

Recall also that B(δn)∗ =
∪

t∈{±1}p Pt, see (9).

In Fig. 2 we have an example where p = 2, s = (1, 1)′ and the polyhedron

Ps contains a single point (0.22, 0.08)′. So in this example β̂n is unique.

Let us make an easy observation. If β̂n is not unique iff

1 ≤ affine.dimension(Ps) ≤ p− 1. (17)

[Proof. The second inequality follows from the minimality of (δn)∗, see (8), and
the first inequality follows from the assumption that Ps contains at least two
distinct points, and thus also a line segment connecting them (by convexity).]

What can happen is illustrated by example in Fig. 4, where p = 3, s =
(1, 1, 1)′ and affine.dimension(Ps) = 2. This happens when the system Asξ ≤
cs contains two inequalities α′

1ξ ≤ ζ1 and α′
2ξ ≤ ζ2 such that

α1 = −α2 and ζ1 = −ζ2. (18)
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α1

α2 = −α1

ξ3

ξ1

ξ2
Ps

0

Fig. 4 How Ps can look when β̂n is not unique.

Clearly, Ps is a random polyhedron (since the coefficients of the system
Asξ ≤ cs are random variables). From (17) we can derive the following dimen-

sion condition: if the affine dimension of Ps is zero a.s., then β̂n is unique.
This holds true, for example, when every p-tuple of distinct inequalities chosen
from the system Asξ ≤ cs are linearly independent a.s.

The last condition can be expected to be satisfied when the errors are
independent and continuously distributed. However, currently we cannot prove
it: we cannot rule out such cases as (18). The problem is that the system
Asξ ≤ cs contains random variables Zn, yn, (δn)∗, which are dependent, even
if we assumed independence of Zn, yn. Indeed, (δn)∗ depends on both Zn and
yn.

To conclude, it would be interesting to derive sufficient conditions for a.s.
uniqueness of β̂n when n is fixed. However, this problem is not of high im-
portance, since the possible ambiguity of β̂n for a particular fixed n does not
violate the asymptotic consistency.

10 Conclusions

We have considered an Errors-In-Variables linear regression model with stochas-
tic regressors, where our assumptions are that: (i) it is known which regressors
are affected by errors and which are not and; (ii) the matrix of regressors
asymptotically fulfills a certain form of regularity; and (iii) all errors share the
same bound, which is—roughly stated—approached arbitrarily close with a
high probability when the number of observations is sufficiently large. (Then
we relaxed the last assumption to the form that error bounds need not be
identical, but we need to assume that their ratios are known.) We need nei-
ther zero means, nor independence of errors, nor identical distributions. We
have shown that Total Least Squares, where the Frobenius matrix norm is
replaced by the Chebyshev norm, yields a consistent estimator of the param-
eters. From the computational viewpoint, we have reduced the problem to
solving 2p generalized linear-fractional programming problems, where p is the
number of regression parameters. The good news is that computation time of
the method is not exponential in n, the number of observations, and thus the
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estimator can be efficiently computed for many practical regression models,
where we have at most, say, 20 regression parameters, even if n is large. (220 is
still feasible with the aid of today’s hardware.) Moreover, the method is easy
to parallelize. This is, in a sense, the best possible algorithmic result, since the
problem can be shown to be NP-hard.
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